详细介绍用户画像 京东用户画像分析( 二 )


然后我们来看看目录,第一部分是说what,就是什么是用户画像;第二部分是说why,为什么我们需要用户画像以及精细化运营;然后第三部分是how,我们如何构建商品和用户画像;第四部分是举例,是一些方法论的介绍;最后,我们做一个整体的总结 。
课程目标是希望通过分享,首先让大家去了解到用户画像和商品画像,整体概念框架以及构建的一些方法;熟悉常见的商品和用户画像的一些应用;尝试结合自己的工作做一些实践 。出于对于过往公司数据及技术的保密,无法直接分享给大家特别细粒度且对应的数据 。所以分享过程中我会结合业界的一些案例,以及其他前辈公开在网上的分享内容和数据,帮助大家去理解整个应用 。
01
什么是商品/用户画像
首先我们来看一下什么是用户画像,根据维基百科的定义,用户画像就是与该用户相关联的数据的可视化的展现,一句话来总结就是用户信息标签化 。从用户海量的信息里面去找到一些标签,为用户去贴上这些标签,当然这些标签的来源就是一些用户的行为 。
举个范冰冰的例子,客户这个实体通过客户信息的收集,映射到一个客户的画像,最终通过这些画像来建立认知,比如说范冰冰是一个演员,是一个女性,有参加过哪些电影节等 。当然你会问那上面的这些标签有什么用呢?这会根据具体的业务场景来定,有些标签在X场景下它是没用的,在Y场景下则可能非常有用,当然这也提前说明了画像构建的过程肯定是需要与业务结合的展开 。
比较常见的画像是我们需要建立平台客户群体化认知时,我们需要借助可视化的标签,我们看一下京东的一个食品用户画像 。对于食品这个业务场景,平台上购买的用户他们是长成什么样的?比如性别比例,蓝领与白领占比,评价敏感的人的占比等,通过拉平垂类偏好用户画像与全站的对比,来寻找差异点和优化点 。
举个例子来说,你是抢购秒杀频道的运营负责人,你通过类似的上述分析,找到了秒杀频道和全站的用户画像差异点,那有什么用呢?比如我们发现秒杀频道女性用户或者大龄女性用户,相对于全站占比高很多,然后我们通过全站分析出这类用户喜欢购买的品类是A、B、C;但是频道内我们发现几乎没有A、B、C这些品类的商品,或者A、B、C这些类目的价格段高了很多,甚至是大量的男性商品 。那我们马上就找到了一个优化点,是否可以在该场景做一些品类和商品的调整进行一些测试,可能就会在测试中找到明显的提升 。
再比如食品品类下的商品运营如何去拓宽自己的流量池,通过类似上述的分析,比如在一个某个频道发现有非常多的18-30岁的男性,并他们在平台有非常多的电子类产品的购买,结合你的专家知识,你的碳酸饮料是否可以考虑进入这个频道呢 。

猜你喜欢